479 lines
12 KiB
C#
479 lines
12 KiB
C#
using System;
|
|
|
|
namespace Gif.Components
|
|
{
|
|
public class NeuQuant
|
|
{
|
|
protected static readonly int netsize = 256; /* number of colours used */
|
|
/* four primes near 500 - assume no image has a length so large */
|
|
/* that it is divisible by all four primes */
|
|
protected static readonly int prime1 = 499;
|
|
protected static readonly int prime2 = 491;
|
|
protected static readonly int prime3 = 487;
|
|
protected static readonly int prime4 = 503;
|
|
protected static readonly int minpicturebytes = ( 3 * prime4 );
|
|
/* minimum size for input image */
|
|
/* Program Skeleton
|
|
----------------
|
|
[select samplefac in range 1..30]
|
|
[read image from input file]
|
|
pic = (unsigned char*) malloc(3*width*height);
|
|
initnet(pic,3*width*height,samplefac);
|
|
learn();
|
|
unbiasnet();
|
|
[write output image header, using writecolourmap(f)]
|
|
inxbuild();
|
|
write output image using inxsearch(b,g,r) */
|
|
|
|
/* Network Definitions
|
|
------------------- */
|
|
protected static readonly int maxnetpos = (netsize - 1);
|
|
protected static readonly int netbiasshift = 4; /* bias for colour values */
|
|
protected static readonly int ncycles = 100; /* no. of learning cycles */
|
|
|
|
/* defs for freq and bias */
|
|
protected static readonly int intbiasshift = 16; /* bias for fractions */
|
|
protected static readonly int intbias = (((int) 1) << intbiasshift);
|
|
protected static readonly int gammashift = 10; /* gamma = 1024 */
|
|
protected static readonly int gamma = (((int) 1) << gammashift);
|
|
protected static readonly int betashift = 10;
|
|
protected static readonly int beta = (intbias >> betashift); /* beta = 1/1024 */
|
|
protected static readonly int betagamma =
|
|
(intbias << (gammashift - betashift));
|
|
|
|
/* defs for decreasing radius factor */
|
|
protected static readonly int initrad = (netsize >> 3); /* for 256 cols, radius starts */
|
|
protected static readonly int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
|
|
protected static readonly int radiusbias = (((int) 1) << radiusbiasshift);
|
|
protected static readonly int initradius = (initrad * radiusbias); /* and decreases by a */
|
|
protected static readonly int radiusdec = 30; /* factor of 1/30 each cycle */
|
|
|
|
/* defs for decreasing alpha factor */
|
|
protected static readonly int alphabiasshift = 10; /* alpha starts at 1.0 */
|
|
protected static readonly int initalpha = (((int) 1) << alphabiasshift);
|
|
|
|
protected int alphadec; /* biased by 10 bits */
|
|
|
|
/* radbias and alpharadbias used for radpower calculation */
|
|
protected static readonly int radbiasshift = 8;
|
|
protected static readonly int radbias = (((int) 1) << radbiasshift);
|
|
protected static readonly int alpharadbshift = (alphabiasshift + radbiasshift);
|
|
protected static readonly int alpharadbias = (((int) 1) << alpharadbshift);
|
|
|
|
/* Types and Global Variables
|
|
-------------------------- */
|
|
|
|
protected byte[] thepicture; /* the input image itself */
|
|
protected int lengthcount; /* lengthcount = H*W*3 */
|
|
|
|
protected int samplefac; /* sampling factor 1..30 */
|
|
|
|
// typedef int pixel[4]; /* BGRc */
|
|
protected int[][] network; /* the network itself - [netsize][4] */
|
|
|
|
protected int[] netindex = new int[256];
|
|
/* for network lookup - really 256 */
|
|
|
|
protected int[] bias = new int[netsize];
|
|
/* bias and freq arrays for learning */
|
|
protected int[] freq = new int[netsize];
|
|
protected int[] radpower = new int[initrad];
|
|
/* radpower for precomputation */
|
|
|
|
/* Initialise network in range (0,0,0) to (255,255,255) and set parameters
|
|
----------------------------------------------------------------------- */
|
|
public NeuQuant(byte[] thepic, int len, int sample)
|
|
{
|
|
|
|
int i;
|
|
int[] p;
|
|
|
|
thepicture = thepic;
|
|
lengthcount = len;
|
|
samplefac = sample;
|
|
|
|
network = new int[netsize][];
|
|
for (i = 0; i < netsize; i++)
|
|
{
|
|
network[i] = new int[4];
|
|
p = network[i];
|
|
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
|
|
freq[i] = intbias / netsize; /* 1/netsize */
|
|
bias[i] = 0;
|
|
}
|
|
}
|
|
|
|
public byte[] ColorMap()
|
|
{
|
|
byte[] map = new byte[3 * netsize];
|
|
int[] index = new int[netsize];
|
|
for (int i = 0; i < netsize; i++)
|
|
index[network[i][3]] = i;
|
|
int k = 0;
|
|
for (int i = 0; i < netsize; i++)
|
|
{
|
|
int j = index[i];
|
|
map[k++] = (byte) (network[j][0]);
|
|
map[k++] = (byte) (network[j][1]);
|
|
map[k++] = (byte) (network[j][2]);
|
|
}
|
|
return map;
|
|
}
|
|
|
|
/* Insertion sort of network and building of netindex[0..255] (to do after unbias)
|
|
------------------------------------------------------------------------------- */
|
|
public void Inxbuild()
|
|
{
|
|
|
|
int i, j, smallpos, smallval;
|
|
int[] p;
|
|
int[] q;
|
|
int previouscol, startpos;
|
|
|
|
previouscol = 0;
|
|
startpos = 0;
|
|
for (i = 0; i < netsize; i++)
|
|
{
|
|
p = network[i];
|
|
smallpos = i;
|
|
smallval = p[1]; /* index on g */
|
|
/* find smallest in i..netsize-1 */
|
|
for (j = i + 1; j < netsize; j++)
|
|
{
|
|
q = network[j];
|
|
if (q[1] < smallval)
|
|
{ /* index on g */
|
|
smallpos = j;
|
|
smallval = q[1]; /* index on g */
|
|
}
|
|
}
|
|
q = network[smallpos];
|
|
/* swap p (i) and q (smallpos) entries */
|
|
if (i != smallpos)
|
|
{
|
|
j = q[0];
|
|
q[0] = p[0];
|
|
p[0] = j;
|
|
j = q[1];
|
|
q[1] = p[1];
|
|
p[1] = j;
|
|
j = q[2];
|
|
q[2] = p[2];
|
|
p[2] = j;
|
|
j = q[3];
|
|
q[3] = p[3];
|
|
p[3] = j;
|
|
}
|
|
/* smallval entry is now in position i */
|
|
if (smallval != previouscol)
|
|
{
|
|
netindex[previouscol] = (startpos + i) >> 1;
|
|
for (j = previouscol + 1; j < smallval; j++)
|
|
netindex[j] = i;
|
|
previouscol = smallval;
|
|
startpos = i;
|
|
}
|
|
}
|
|
netindex[previouscol] = (startpos + maxnetpos) >> 1;
|
|
for (j = previouscol + 1; j < 256; j++)
|
|
netindex[j] = maxnetpos; /* really 256 */
|
|
}
|
|
|
|
/* Main Learning Loop
|
|
------------------ */
|
|
public void Learn()
|
|
{
|
|
|
|
int i, j, b, g, r;
|
|
int radius, rad, alpha, step, delta, samplepixels;
|
|
byte[] p;
|
|
int pix, lim;
|
|
|
|
if (lengthcount < minpicturebytes)
|
|
samplefac = 1;
|
|
alphadec = 30 + ((samplefac - 1) / 3);
|
|
p = thepicture;
|
|
pix = 0;
|
|
lim = lengthcount;
|
|
samplepixels = lengthcount / (3 * samplefac);
|
|
delta = samplepixels / ncycles;
|
|
alpha = initalpha;
|
|
radius = initradius;
|
|
|
|
rad = radius >> radiusbiasshift;
|
|
if (rad <= 1)
|
|
rad = 0;
|
|
for (i = 0; i < rad; i++)
|
|
radpower[i] =
|
|
alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
|
|
|
|
//fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);
|
|
|
|
if (lengthcount < minpicturebytes)
|
|
step = 3;
|
|
else if ((lengthcount % prime1) != 0)
|
|
step = 3 * prime1;
|
|
else
|
|
{
|
|
if ((lengthcount % prime2) != 0)
|
|
step = 3 * prime2;
|
|
else
|
|
{
|
|
if ((lengthcount % prime3) != 0)
|
|
step = 3 * prime3;
|
|
else
|
|
step = 3 * prime4;
|
|
}
|
|
}
|
|
|
|
i = 0;
|
|
while (i < samplepixels)
|
|
{
|
|
b = (p[pix + 0] & 0xff) << netbiasshift;
|
|
g = (p[pix + 1] & 0xff) << netbiasshift;
|
|
r = (p[pix + 2] & 0xff) << netbiasshift;
|
|
j = Contest(b, g, r);
|
|
|
|
Altersingle(alpha, j, b, g, r);
|
|
if (rad != 0)
|
|
Alterneigh(rad, j, b, g, r); /* alter neighbours */
|
|
|
|
pix += step;
|
|
if (pix >= lim)
|
|
pix -= lengthcount;
|
|
|
|
i++;
|
|
if (delta == 0)
|
|
delta = 1;
|
|
if (i % delta == 0)
|
|
{
|
|
alpha -= alpha / alphadec;
|
|
radius -= radius / radiusdec;
|
|
rad = radius >> radiusbiasshift;
|
|
if (rad <= 1)
|
|
rad = 0;
|
|
for (j = 0; j < rad; j++)
|
|
radpower[j] =
|
|
alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
|
|
}
|
|
}
|
|
//fprintf(stderr,"finished 1D learning: readonly alpha=%f !\n",((float)alpha)/initalpha);
|
|
}
|
|
|
|
/* Search for BGR values 0..255 (after net is unbiased) and return colour index
|
|
---------------------------------------------------------------------------- */
|
|
public int Map(int b, int g, int r)
|
|
{
|
|
|
|
int i, j, dist, a, bestd;
|
|
int[] p;
|
|
int best;
|
|
|
|
bestd = 1000; /* biggest possible dist is 256*3 */
|
|
best = -1;
|
|
i = netindex[g]; /* index on g */
|
|
j = i - 1; /* start at netindex[g] and work outwards */
|
|
|
|
while ((i < netsize) || (j >= 0))
|
|
{
|
|
if (i < netsize)
|
|
{
|
|
p = network[i];
|
|
dist = p[1] - g; /* inx key */
|
|
if (dist >= bestd)
|
|
i = netsize; /* stop iter */
|
|
else
|
|
{
|
|
i++;
|
|
if (dist < 0)
|
|
dist = -dist;
|
|
a = p[0] - b;
|
|
if (a < 0)
|
|
a = -a;
|
|
dist += a;
|
|
if (dist < bestd)
|
|
{
|
|
a = p[2] - r;
|
|
if (a < 0)
|
|
a = -a;
|
|
dist += a;
|
|
if (dist < bestd)
|
|
{
|
|
bestd = dist;
|
|
best = p[3];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (j >= 0)
|
|
{
|
|
p = network[j];
|
|
dist = g - p[1]; /* inx key - reverse dif */
|
|
if (dist >= bestd)
|
|
j = -1; /* stop iter */
|
|
else
|
|
{
|
|
j--;
|
|
if (dist < 0)
|
|
dist = -dist;
|
|
a = p[0] - b;
|
|
if (a < 0)
|
|
a = -a;
|
|
dist += a;
|
|
if (dist < bestd)
|
|
{
|
|
a = p[2] - r;
|
|
if (a < 0)
|
|
a = -a;
|
|
dist += a;
|
|
if (dist < bestd)
|
|
{
|
|
bestd = dist;
|
|
best = p[3];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (best);
|
|
}
|
|
public byte[] Process()
|
|
{
|
|
Learn();
|
|
Unbiasnet();
|
|
Inxbuild();
|
|
return ColorMap();
|
|
}
|
|
|
|
/* Unbias network to give byte values 0..255 and record position i to prepare for sort
|
|
----------------------------------------------------------------------------------- */
|
|
public void Unbiasnet()
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < netsize; i++)
|
|
{
|
|
network[i][0] >>= netbiasshift;
|
|
network[i][1] >>= netbiasshift;
|
|
network[i][2] >>= netbiasshift;
|
|
network[i][3] = i; /* record colour no */
|
|
}
|
|
}
|
|
|
|
/* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
|
|
--------------------------------------------------------------------------------- */
|
|
protected void Alterneigh(int rad, int i, int b, int g, int r)
|
|
{
|
|
|
|
int j, k, lo, hi, a, m;
|
|
int[] p;
|
|
|
|
lo = i - rad;
|
|
if (lo < -1)
|
|
lo = -1;
|
|
hi = i + rad;
|
|
if (hi > netsize)
|
|
hi = netsize;
|
|
|
|
j = i + 1;
|
|
k = i - 1;
|
|
m = 1;
|
|
while ((j < hi) || (k > lo))
|
|
{
|
|
a = radpower[m++];
|
|
if (j < hi)
|
|
{
|
|
p = network[j++];
|
|
try
|
|
{
|
|
p[0] -= (a * (p[0] - b)) / alpharadbias;
|
|
p[1] -= (a * (p[1] - g)) / alpharadbias;
|
|
p[2] -= (a * (p[2] - r)) / alpharadbias;
|
|
}
|
|
catch (Exception)
|
|
{
|
|
} // prevents 1.3 miscompilation
|
|
}
|
|
if (k > lo)
|
|
{
|
|
p = network[k--];
|
|
try
|
|
{
|
|
p[0] -= (a * (p[0] - b)) / alpharadbias;
|
|
p[1] -= (a * (p[1] - g)) / alpharadbias;
|
|
p[2] -= (a * (p[2] - r)) / alpharadbias;
|
|
}
|
|
catch (Exception)
|
|
{
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Move neuron i towards biased (b,g,r) by factor alpha
|
|
---------------------------------------------------- */
|
|
protected void Altersingle(int alpha, int i, int b, int g, int r)
|
|
{
|
|
|
|
/* alter hit neuron */
|
|
int[] n = network[i];
|
|
n[0] -= (alpha * (n[0] - b)) / initalpha;
|
|
n[1] -= (alpha * (n[1] - g)) / initalpha;
|
|
n[2] -= (alpha * (n[2] - r)) / initalpha;
|
|
}
|
|
|
|
/* Search for biased BGR values
|
|
---------------------------- */
|
|
protected int Contest(int b, int g, int r)
|
|
{
|
|
|
|
/* finds closest neuron (min dist) and updates freq */
|
|
/* finds best neuron (min dist-bias) and returns position */
|
|
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
|
|
/* bias[i] = gamma*((1/netsize)-freq[i]) */
|
|
|
|
int i, dist, a, biasdist, betafreq;
|
|
int bestpos, bestbiaspos, bestd, bestbiasd;
|
|
int[] n;
|
|
|
|
bestd = ~(((int) 1) << 31);
|
|
bestbiasd = bestd;
|
|
bestpos = -1;
|
|
bestbiaspos = bestpos;
|
|
|
|
for (i = 0; i < netsize; i++)
|
|
{
|
|
n = network[i];
|
|
dist = n[0] - b;
|
|
if (dist < 0)
|
|
dist = -dist;
|
|
a = n[1] - g;
|
|
if (a < 0)
|
|
a = -a;
|
|
dist += a;
|
|
a = n[2] - r;
|
|
if (a < 0)
|
|
a = -a;
|
|
dist += a;
|
|
if (dist < bestd)
|
|
{
|
|
bestd = dist;
|
|
bestpos = i;
|
|
}
|
|
biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
|
|
if (biasdist < bestbiasd)
|
|
{
|
|
bestbiasd = biasdist;
|
|
bestbiaspos = i;
|
|
}
|
|
betafreq = (freq[i] >> betashift);
|
|
freq[i] -= betafreq;
|
|
bias[i] += (betafreq << gammashift);
|
|
}
|
|
freq[bestpos] += beta;
|
|
bias[bestpos] -= betagamma;
|
|
return (bestbiaspos);
|
|
}
|
|
}
|
|
} |